Retrieving and analyzing issues from Sentry.io
A Model Context Protocol server for retrieving and analyzing issues from Sentry.io. This server provides tools to inspect error reports, stacktraces, and other debugging information from your Sentry account.
get_sentry_issue
issue_id_or_url
(string): Sentry issue ID or URL to analyzesentry-issue
issue_id_or_url
(string): Sentry issue ID or URLWhen using uv
no specific installation is needed. We will
use uvx
to directly run mcp-server-sentry.
Alternatively you can install mcp-server-sentry
via pip:
pip install mcp-server-sentry
After installation, you can run it as a script using:
python -m mcp_server_sentry
Add this to your claude_desktop_config.json
:
"mcpServers": {
"sentry": {
"command": "uvx",
"args": ["mcp-server-sentry", "--auth-token", "YOUR_SENTRY_TOKEN"]
}
}
"mcpServers": {
"sentry": {
"command": "docker",
"args": ["run", "-i", "--rm", "mcp/sentry", "--auth-token", "YOUR_SENTRY_TOKEN"]
}
}
"mcpServers": {
"sentry": {
"command": "python",
"args": ["-m", "mcp_server_sentry", "--auth-token", "YOUR_SENTRY_TOKEN"]
}
}
For quick installation, use one of the one-click installation buttons below...
For manual installation, add the following JSON block to your User Settings (JSON) file in VS Code. You can do this by pressing Ctrl + Shift + P
and typing Preferences: Open Settings (JSON)
.
Optionally, you can add it to a file called .vscode/mcp.json
in your workspace. This will allow you to share the configuration with others.
Note that the
mcp
key is needed when using themcp.json
file.
{
"mcp": {
"inputs": [
{
"type": "promptString",
"id": "auth_token",
"description": "Sentry Auth Token",
"password": true
}
],
"servers": {
"sentry": {
"command": "uvx",
"args": ["mcp-server-sentry"],
"env": {
"SENTRY_AUTH_TOKEN": "${input:auth_token}"
}
}
}
}
}
{
"mcp": {
"inputs": [
{
"type": "promptString",
"id": "auth_token",
"description": "Sentry Auth Token",
"password": true
}
],
"servers": {
"sentry": {
"command": "docker",
"args": ["run", "-i", "--rm", "mcp/sentry"],
"env": {
"SENTRY_AUTH_TOKEN": "${input:auth_token}"
}
}
}
}
}
Add to your Zed settings.json:
"context_servers": [
"mcp-server-sentry": {
"command": {
"path": "uvx",
"args": ["mcp-server-sentry", "--auth-token", "YOUR_SENTRY_TOKEN"]
}
}
],
"context_servers": {
"mcp-server-sentry": {
"command": "python",
"args": ["-m", "mcp_server_sentry", "--auth-token", "YOUR_SENTRY_TOKEN"]
}
},
You can use the MCP inspector to debug the server. For uvx installations:
npx @modelcontextprotocol/inspector uvx mcp-server-sentry --auth-token YOUR_SENTRY_TOKEN
Or if you've installed the package in a specific directory or are developing on it:
cd path/to/servers/src/sentry
npx @modelcontextprotocol/inspector uv run mcp-server-sentry --auth-token YOUR_SENTRY_TOKEN
by: isaacwasserman
This MCP server enables LLMs to interact with Snowflake databases, allowing for secure and controlled data operations.